Device no longer communicating

My STM32 LoRa Discovery Kit (B-L072Z-LRWAN1) was originally programmed to use LongFi, and was communicating through the helium network. Now, it appears there are changes to the helium console that require changes to the device code as well? For example, the device ID is now called an AppEUI. I tried replacing the deviceID with the AppEUI in my ardruino code, but I’m receiving an error because the AppEUI contains letters and numbers instead of just numbers. Is there an update to the developer guide that will help developers to use the new formats?

zootsewt,
The guide at https://developer.helium.com/device/arduino-quickstart has been updated to reflect LoRaWAN changes.
-Travis

Thank you @travis.helium, I’ve made the changes as outlined in the quickstart guide. However, no packets are received in the console. I’m seeing this message on the serial console -

21:07:33.203 -> 23496426: EV_TXSTART
21:07:41.581 -> 23877679: EV_JOIN_TXCOMPLETE: no JoinAccept

I’m seeing this message on my helium console (AppEUI removed) -
success Join attempt from AppEUI: XXXXXXX DevEUI: 0000000000000000 0.00 February 17, 2020 9:08 PM

Any suggestions?

There are a number of reasons you may not get an immediate join accept. You have verified that you are on the Helium channel subrange (and antennas and such are all square)? Let it run for just a bit and see if it picks up.

@travis.helium, still no dice.
I’ve tried to modify the subBand, but that didn’t appear to work - LMIC_selectSubBand(6); //tried 5,7 and 8.
I’ve also let the Join attempts run for a long time, but that didn’t seem to make any difference.

Here is the code I’m running, with keys removed. Any suggestions?

Blockquote >

/*******************************************************************************

  • Copyright © 2015 Thomas Telkamp and Matthijs Kooijman

  • Copyright © 2018 Terry Moore, MCCI

  • Permission is hereby granted, free of charge, to anyone

  • obtaining a copy of this document and accompanying files,

  • to do whatever they want with them without any restriction,

  • including, but not limited to, copying, modification and redistribution.

  • NO WARRANTY OF ANY KIND IS PROVIDED.

  • This example sends a valid LoRaWAN packet with payload "Hello,

  • world!", using frequency and encryption settings matching those of

  • the The Things Network. It’s pre-configured for the Adafruit

  • Feather M0 LoRa.

  • This uses OTAA (Over-the-air activation), where where a DevEUI and

  • application key is configured, which are used in an over-the-air

  • activation procedure where a DevAddr and session keys are

  • assigned/generated for use with all further communication.

  • Note: LoRaWAN per sub-band duty-cycle limitation is enforced (1% in

  • g1, 0.1% in g2), but not the TTN fair usage policy (which is probably

  • violated by this sketch when left running for longer)!

  • To use this sketch, first register your application and device with

  • the things network, to set or generate an AppEUI, DevEUI and AppKey.

  • Multiple devices can use the same AppEUI, but each device has its own

  • DevEUI and AppKey.

  • Do not forget to define the radio type correctly in

  • arduino-lmic/project_config/lmic_project_config.h or from your BOARDS.txt.

*******************************************************************************/

#include <lmic.h>
#include <hal/hal.h>
#include <SPI.h>

//
// For normal use, we require that you edit the sketch to replace FILLMEIN
// with values assigned by the TTN console. However, for regression tests,
// we want to be able to compile these scripts. The regression tests define
// COMPILE_REGRESSION_TEST, and in that case we define FILLMEIN to a non-
// working but innocuous value.
//
#ifdef COMPILE_REGRESSION_TEST

define FILLMEIN 0

#else

warning “You must replace the values marked FILLMEIN with real values from the TTN control panel!”

define FILLMEIN (#dont edit this, edit the lines that use FILLMEIN)

#endif

// This EUI must be in little-endian format, so least-significant-byte
// first. When copying an EUI from ttnctl output, this means to reverse
// the bytes. For TTN issued EUIs the last bytes should be 0xD5, 0xB3,
// 0x70.
static const u1_t PROGMEM APPEUI[8]= { 0x };
void os_getArtEui (u1_t* buf) { memcpy_P(buf, APPEUI, 8);}

// This should also be in little endian format, see above.
static const u1_t PROGMEM DEVEUI[8]= { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
void os_getDevEui (u1_t* buf) { memcpy_P(buf, DEVEUI, 8);}

// This key should be in big endian format (or, since it is not really a
// number but a block of memory, endianness does not really apply). In
// practice, a key taken from the TTN console can be copied as-is.
static const u1_t PROGMEM APPKEY[16] = { 0x };
void os_getDevKey (u1_t* buf) { memcpy_P(buf, APPKEY, 16);}

static uint8_t mydata[] = “Hello, world!”;
static osjob_t sendjob;

// Schedule TX every this many seconds (might become longer due to duty
// cycle limitations).
const unsigned TX_INTERVAL = 60;

// Pin mapping
//
// Adafruit BSPs are not consistent – m0 express defs ARDUINO_SAMD_FEATHER_M0,
// m0 defs ADAFRUIT_FEATHER_M0
//
#if defined(ARDUINO_SAMD_FEATHER_M0) || defined(ADAFRUIT_FEATHER_M0)
// Pin mapping for Adafruit Feather M0 LoRa, etc.
const lmic_pinmap lmic_pins = {
.nss = 8,
.rxtx = LMIC_UNUSED_PIN,
.rst = 4,
.dio = {3, 6, LMIC_UNUSED_PIN},
.rxtx_rx_active = 0,
.rssi_cal = 8, // LBT cal for the Adafruit Feather M0 LoRa, in dB
.spi_freq = 8000000,
};
#elif defined(ARDUINO_AVR_FEATHER32U4)
// Pin mapping for Adafruit Feather 32u4 LoRa, etc.
// Just like Feather M0 LoRa, but uses SPI at 1MHz; and that’s only
// because MCCI doesn’t have a test board; probably higher frequencies
// will work.
const lmic_pinmap lmic_pins = {
.nss = 8,
.rxtx = LMIC_UNUSED_PIN,
.rst = 4,
.dio = {7, 6, LMIC_UNUSED_PIN},
.rxtx_rx_active = 0,
.rssi_cal = 8, // LBT cal for the Adafruit Feather 32U4 LoRa, in dB
.spi_freq = 1000000,
};
#elif defined(ARDUINO_CATENA_4551)
// Pin mapping for Murata module / Catena 4551
const lmic_pinmap lmic_pins = {
.nss = 7,
.rxtx = 29,
.rst = 8,
.dio = { 25, // DIO0 (IRQ) is D25
26, // DIO1 is D26
27, // DIO2 is D27
},
.rxtx_rx_active = 1,
.rssi_cal = 10,
.spi_freq = 8000000 // 8MHz
};
#elif defined(MCCI_CATENA_4610)
#include “arduino_lmic_hal_boards.h”
const lmic_pinmap lmic_pins = *Arduino_LMIC::GetPinmap_Catena4610();
#elif defined(ARDUINO_DISCO_L072CZ_LRWAN1)
#include “arduino_lmic_hal_boards.h”
// Pin mapping Discovery
const lmic_pinmap lmic_pins = *Arduino_LMIC::GetPinmap_Disco_L072cz_Lrwan1();
#else

error “Unknown target”

#endif

void printHex2(unsigned v) {
v &= 0xff;
if (v < 16)
Serial.print(‘0’);
Serial.print(v, HEX);
}

void onEvent (ev_t ev) {
Serial.print(os_getTime());
Serial.print(": ");
switch(ev) {
case EV_SCAN_TIMEOUT:
Serial.println(F(“EV_SCAN_TIMEOUT”));
break;
case EV_BEACON_FOUND:
Serial.println(F(“EV_BEACON_FOUND”));
break;
case EV_BEACON_MISSED:
Serial.println(F(“EV_BEACON_MISSED”));
break;
case EV_BEACON_TRACKED:
Serial.println(F(“EV_BEACON_TRACKED”));
break;
case EV_JOINING:
Serial.println(F(“EV_JOINING”));
break;
case EV_JOINED:
Serial.println(F(“EV_JOINED”));
{
u4_t netid = 0;
devaddr_t devaddr = 0;
u1_t nwkKey[16];
u1_t artKey[16];
LMIC_getSessionKeys(&netid, &devaddr, nwkKey, artKey);
Serial.print("netid: ");
Serial.println(netid, DEC);
Serial.print(“devaddr: “);
Serial.println(devaddr, HEX);
Serial.print(“AppSKey: “);
for (size_t i=0; i<sizeof(artKey); ++i) {
if (i != 0)
Serial.print(”-”);
printHex2(artKey[i]);
}
Serial.println(””);
Serial.print(“NwkSKey: “);
for (size_t i=0; i<sizeof(nwkKey); ++i) {
if (i != 0)
Serial.print(”-”);
printHex2(nwkKey[i]);
}
Serial.println();
}
// Disable link check validation (automatically enabled
// during join, but because slow data rates change max TX
// size, we don’t use it in this example.
LMIC_setLinkCheckMode(0);
break;
/*
|| This event is defined but not used in the code. No
|| point in wasting codespace on it.
||
|| case EV_RFU1:
|| Serial.println(F(“EV_RFU1”));
|| break;
/
case EV_JOIN_FAILED:
Serial.println(F(“EV_JOIN_FAILED”));
break;
case EV_REJOIN_FAILED:
Serial.println(F(“EV_REJOIN_FAILED”));
break;
break;
case EV_TXCOMPLETE:
Serial.println(F(“EV_TXCOMPLETE (includes waiting for RX windows)”));
if (LMIC.txrxFlags & TXRX_ACK)
Serial.println(F(“Received ack”));
if (LMIC.dataLen) {
Serial.println(F(“Received “));
Serial.println(LMIC.dataLen);
Serial.println(F(” bytes of payload”));
}
// Schedule next transmission
os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(TX_INTERVAL), do_send);
break;
case EV_LOST_TSYNC:
Serial.println(F(“EV_LOST_TSYNC”));
break;
case EV_RESET:
Serial.println(F(“EV_RESET”));
break;
case EV_RXCOMPLETE:
// data received in ping slot
Serial.println(F(“EV_RXCOMPLETE”));
break;
case EV_LINK_DEAD:
Serial.println(F(“EV_LINK_DEAD”));
break;
case EV_LINK_ALIVE:
Serial.println(F(“EV_LINK_ALIVE”));
break;
/

|| This event is defined but not used in the code. No
|| point in wasting codespace on it.
||
|| case EV_SCAN_FOUND:
|| Serial.println(F(“EV_SCAN_FOUND”));
|| break;
/
case EV_TXSTART:
Serial.println(F(“EV_TXSTART”));
break;
case EV_TXCANCELED:
Serial.println(F(“EV_TXCANCELED”));
break;
case EV_RXSTART:
/
do not print anything – it wrecks timing */
break;
case EV_JOIN_TXCOMPLETE:
Serial.println(F(“EV_JOIN_TXCOMPLETE: no JoinAccept”));

        break;

    default:
        Serial.print(F("Unknown event: "));
        Serial.println((unsigned) ev);
        break;
}

}

void do_send(osjob_t* j){
// Check if there is not a current TX/RX job running
if (LMIC.opmode & OP_TXRXPEND) {
Serial.println(F(“OP_TXRXPEND, not sending”));
} else {
// Prepare upstream data transmission at the next possible time.
LMIC_setTxData2(1, mydata, sizeof(mydata)-1, 0);
Serial.println(F(“Packet queued”));
}
// Next TX is scheduled after TX_COMPLETE event.
}

void setup() {
delay(5000);
while (! Serial)
;
Serial.begin(115200);
Serial.println(F(“Starting”));

#ifdef VCC_ENABLE
// For Pinoccio Scout boards
pinMode(VCC_ENABLE, OUTPUT);
digitalWrite(VCC_ENABLE, HIGH);
delay(1000);
#endif

#if defined(ARDUINO_DISCO_L072CZ_LRWAN1)
SPI.setMOSI(RADIO_MOSI_PORT);
SPI.setMISO(RADIO_MISO_PORT);
SPI.setSCLK(RADIO_SCLK_PORT);
SPI.setSSEL(RADIO_NSS_PORT);
#endif

// LMIC init
os_init();
// Reset the MAC state. Session and pending data transfers will be discarded.
LMIC_reset();

// allow much more clock error than the X/1000 default. See:
// https://github.com/mcci-catena/arduino-lorawan/issues/74#issuecomment-462171974
// https://github.com/mcci-catena/arduino-lmic/commit/42da75b56#diff-16d75524a9920f5d043fe731a27cf85aL633
// the X/1000 means an error rate of 0.1%; the above issue discusses using values up to 10%.
// so, values from 10 (10% error, the most lax) to 1000 (0.1% error, the most strict) can be used.
LMIC_setClockError(1 * MAX_CLOCK_ERROR / 40);

/*//added

// First disable all sub-bands
for (int b = 0; b < 8; ++b) {
LMIC_disableSubBand(b);
}
// Then enable the channel(s) you want to use
LMIC_enableChannel(8); // 903.9 MHz
//added*/

LMIC_setLinkCheckMode(0);
LMIC_setDrTxpow(DR_SF7,14); //14
LMIC_selectSubBand(6); //6

// Start job (sending automatically starts OTAA too)
do_send(&sendjob);

}

void loop() {
os_runloop_once();
}

Check your includes. Mine look like the following:

#include <Adafruit_GPS.h>
#include <SPI.h>
#include <arduino_lmic.h>
#include <arduino_lmic_hal_boards.h>
#include <arduino_lmic_hal_configuration.h>
#include <arduino_lmic_lorawan_compliance.h>
#include <arduino_lmic_user_configuration.h>
#include <hal/hal.h>
#include <lmic.h>